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If magnetic sidewalls are assumed for the structure, then the
functions ®, and @, can be expressed in the form

P,(y)=cos B,y ©,(y)=sinB,y.
But in the case of electric sidewalls ®, and @, will be

D, (y)=sinB,y D, (y)=cosB,y

AppenDIx 11
By using (12), (2), and (3) yield
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Eigenvalues for Ridged and Other Waveguides
Containing Corners of Angle 3 /2 or 27
by the Finite Element Method

B. Schiff

Abstract —Superelements have been developed to enable the finite
element method to be used for computing eigenvalues of the Laplacian
over domains containing reentrant corners of angle 3w /2 or 2=. The
superelements embody mesh refinement and include basis functions
which emulate the singular behavior of the solution at the corner. Being
compatible with linear or bilinear elements, the superelements are easily
incorporated into standard finite element programs. The method has
been used to compute TE and TM mode eigenvalues for ridged and
other waveguides, and the results agree well with those obtained using
various other methods.

I. INTRODUCTION

Ridged and other waveguides whose cross sections contain
one or more reentrant corners of angle 3w /2 or 27 are fre-
quently used in microwave devices and circuits. It is therefore
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important to be able to obtain accurate eigenvalues for various
modes of propagation in waveguides of this type. Eigenvalues
have been computed by different authors using a variety of
methods [1]-[9], and the flexibility of the finite element method
would seem to make it ideally suited for this purpose. However,
the standard finite element schemes yield comparatively poor
results when applied to problems whose domain contains a
reentrant corner, owing to the singular nature of the solution
there. One method used to circumvent this difficulty is to refine
the mesh locally in the region of the singularity [10], [11].
Another approach utilizes the known analytic form of the solu-
tion in the neighborhood of the singularity. The shape functions
may be modified suitably over each of the elements which have
a node at the corner, as in [12]; the trial function basis may be
augmented by the addition of functions possessing a suitable
singular behavior at the corner, as in [13] and [14]; or a singular
trial function may be used over a section of a disk centered at
the corner, as in [15]. The calculations to be described herein
use a combination of these ideas. Instead of the usual finite
elements, the region surrounding the corner is covered by a
“superelement” containing a refined mesh over which the trial
function is constrained to approximate the known behavior of
the solution in the neighborhood of the singularity. The super-
element conforms with linear and bilinedr elements, and can
easily be incorporated into standard finite element programs.
The method is thus of very general applicability, and herein lies
its chief advantage. The idea was first applied to problems in
two-dimensional elasticity [16], [17], where a reentrant corner of
angle 27 arises as a result of a crack in the material. Recently
the method has been adapted to determine eigenvalues of the
Laplacian over regions containing a reentrant corner of angle
3w /2 [18]. Two superelements for such a corner were tested by
utilizing them to determine eigenvalues for an L-shaped region,
a problem for which highly accurate results have been obtained
by a variety of methods [2]-[4], [13], [19]. In the present paper,
we use these and similar superelements to determine eigenval-
ues for the two lowest TE or TM modes in guides of various
shapes containing one or more corners of angle 37 /2 or 2.
The method has been described in detail in [18], and only minor
modifications are needed for an angle of 27. The description of
the method in Section II is, therefore, limited to the most
essential features. The results obtained are listed and discussed
in Sections III and IV, and the conclusions summarized in
Section V.

II. Tue COMPUTATIONAL SCHEME

The TE and TM fields for the waveguide may be derived from
potentials which satisfy the Helmholtz equation

V2W(x,y,2)+ kiU (x,y,2)=0 1)

where k, is the propagation constant in free space. Taking the
guide axis to be in the z direction, we assume that ¥(x,y,z) =
Y(x, y)e'** and hence obtain the equation

Vig(x,y)+kip(x,y)=0 (2)

where kZ=k%— B> and Vi denotes the two-dimensional
Laplacian. Thus we wish to solve

(VE+A)o(x,y)=0
with boundary conditions

¥=0

in D 3)

on dD (TM modes)
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Fig. 1. L-shaped superelement embedded in external mesh D ;.

or

on dD (TE modes) (4)

where the eigenvalue is A = k%,

To solve the problem by the finite element method, we use a
superelement over the immediate neighborhood of each re-
entrant corner and cover the remainder of D with the usual
elements. In the cases under discussion, the reentrant corners
are all of magnitude 37 /2 or 2+, and we therefore employ
L-shaped or rectangular superelements. The superelement con-
tains two regions, an interior region D;,, over which the original
mesh is refined, and a transition region D,., which enables the
trial function over D, to be matched to that in D, the region
outside the superelement, as shown in Fig. 1 for an angle of
37 /2.

The trial function over D, is designed to emulate the behav-
ior of the exact solution in the neighborhood of the singularity.
The analytic form of the series expansion for this solution is
known, and the nodal values belonging to D, are therefore
constrained to agree with this series, suitably truncated. Over
each small rectangle of D, the trial function is then taken as
the bilinear interpolant to the nodal values at its four corners.
The stiffness and mass matrices for D, will thus be expressed
with respect to the coefficients in the truncated series. The trial
function in D,, is taken to be piecewise bilinear, in such a way
as to match up between the nodal values of D, and of D, on
its boundary. Thus the whole superelement conforms to bilinear
functions over rectangles or linear functions over triangles in
D, The superelement stiffness and mass matrices will thus be
with respect to the coefficients of the truncated series and the
nodal values belonging to the faces abutting D, as variables.

A detailed description of the construction of the super-
element for an angle of 37 /2 is given in [18). In the case of a
reentrant corner of angle 2, taking polar coordinates (r,8)
with the origin at the corner, the domain will be the region
— 17 < 0 <1 with a slit along # = + 7. The form of the solution
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TABLE I
VaLues oF k; (in RaDIANS /UNIT LENGTH) FOR THE FIRST TwO MODES IN VARIOUS GUIDES
wITH CORNERS OF ANGLE 37 /2

No. of kp kp
d.of. (1st mode) (2nd mode)

Double L-shaped guide (TM)

Fox et al.' and Fix et al.? 3.105 3.898
Current: 0.2 X 0.2 with superelement 84 3.128 3.948
Current: 0.2 0.2 without superelement 96 3.160 3.962
Current: 0.1 0.1 with superelement 329 3.114 3914
Current: 0.1x0.1 without superelement 341 3.121 3914
Crossed guide (TE)
Lin? 7.40 21.89
Current: with refinement and superelement 165 7.402 21.96
Current: with refinement alone 174 7.415 21.99
Current: without refinement 112 7.428 22.03

Symmetric double-ridged guide (TE)

* Montgomery* 3.650 8.041
Utsumi® 3.652 8.014
Israel ef al.b 164 3.657
Current: with refinement and superelement 150 3.658 8.056
Current: with refinement alone 159 3.667 8.062
Current: without refinement 98 3.685 8.073

Symmetric quadruple-ridged guide (TE)

Dasgupta and Saha’ 1.822 2322
Webb$ 1.808 2.300
Current: with refinement and superelement 304 1.811 2.308
Current: with refinement alone 336 1.815 2.313
Current: without refinement 125 1.858 2372
'See [19].

2See [13].

3See [21].

“See [S].

SSee [7].

bSee [10].

’See [6].

83ee [14].

in the neighborhood of the corner will be

o0 e 1
u(r,0)=1%, Y, [c,]r21+’sinj0+d,]rz’ﬂ_l/zcos(j——)0]
‘ 1=0)=1 2
(5)

for boundary conditions u = 0 over 6 = + 1, and

o0 co 1
u(r,8)=13, Y [‘y”rz‘*fcosje+8”r2‘+’+1/2sin(j+—)9]
i=0j=0 2
(6)

for boundary conditions du /dn =0 over 8 =+ 7. The super-
element is analogous to that for an angle of 37 /2 except that it
is now rectangular in shape, with a slit along 8 = &+ 7. As with
the former case, we include all terms with a power of r less than
or equal to 4, involving a total of 12 and 15 terms respectively.

The global stiffness and mass matrices K* and M” for the
whole region, including the contributions from the superelement
matrices for each reentrant corner, are assembled in the usual
manner. The global variables consist of the nodal values for
each node of D_ ., together with the series coefficients for each

out?

of the superelements. The generalized eigenvalue problem
K*G = NMPQ (7

is finally solved to give the eigenvalues /\’J‘, which giveﬁapproxi-

mations to (kT)J2 and the corresponding eigenvectors (.

III. NumericaL ResuLts AND Discussion

In order to assess the effectiveness of the method, it was
applied to various cases for which calculations have been made
by other authors. We first discuss the case where the reentrant
corners are of angle 3w /2. The two superelements (one for
each type of boundary condition in (4)) which had been con-
structed for the benchmark calculations [18] were employed
throughout, and the results are listed in Table I, together with
those of the previous authors. The number of degrees of free-
dom (d.o.f.) listed, i.e., the dimension of the vector Q in (7), is
equal to the number of nodes belonging to D, together with
the total number of series coefficients. The IMSL routine EIGZS
was employed to determine the eigenvalues of (7) for cases
where the total number of degrees of freedom did not exceed
222. For larger problems, the core memory did not suffice, and
the eigenvalues were determined one at a time using inverse
iteration [20]. The matrices were stored in band form, and the
various matrix operations were carried out using a local library
routine, BIGMATR, which handles the disk transfers automati-
cally, as well as performing the computations. Later computa-
tions were performed using the CDC NOSVE operating system
incorporating virtual memory.

In all cases other than the first listed in Table I, the geometry
of the domain required the mesh to be refined to a certain
extent in the neighborhood of a corner in order to be able to
insert the superelement. To illustrate the effect of this refine-
ment and of the use of the superelement separately, we have
also included in Table I (the entries labeled “with refinement
alone”) the results obtained in replacing the superelement by
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Fig. 2. Double-L-shaped single-ridged guide.

the appropriate number of bilinear elements identical in size to
those used in the adjacent portion of D,_,. It will be seen that
the use of a superelement has a noticeable effect on the lowest
eigenvalue, but affects the next eigenvalue to a lesser extent.
The effect on the higher eigenvalues was found to be even less
noticeable.

We will now describe briefly the cases considered and the
methods used by other authors with whose results those of the
current method are compared in Table I. The double-L-shaped
single-ridged guide is shown in Fig. 2. The problem is solved

over the L-shaped domain constituting half of the cross section,:

and detailed results have been listed for this case previously [18].
The eigenvalues obtained for the two lowest TM modes are
included in Table I in order to illustrate the convergence with
decreasing mesh size. In their highly accurate calculations for
this case, both Fox et al. [19] and Fix ef al. [13] took advantage
of the symmetry of the domain and solved the problem over only
a third or a half of the L-shaped region. Their calculations
required significantly fewer degrees of freedom than the current
method, but the methods used are not, on the other hand, of
such general applicability. The results of Beaubien and Wexler
[3], [4] were obtained using standard finite difference tech-
niques, and their method is thus generally applicable. However,
it makes no special provision for the presence of the singularity,
and therefore entails the use of a large number of degrees of
freedom (the authors themselves used up to 5000 for the L-
shaped case).

TE mode eigenvalues for the symmetric double-ridged guide
depicted in Fig. 3 have been obtained by Montgomery [5],
Utsumi [7], and Israel and Miniowitz [10]. The problem is solved
over a quarter of the cross section, a region consisting of two
rectangles. Montgomery expands the solution over each rectan-
gle into normal modes, and sets up an integral equation for the
tangential component of the electric field over the interface.
Application of the Ritz—Galerkin technique to the integral
equation yields the eigenvalue. Utsumi, on the other hand, sets
up a variational expression for the eigenvalue, using trial func-
tions based on normal mode expansions in each rectangle. The
integral over the interface again involves the tangential electric
field, for which Utsumi employs trial functions which reflect the
singular behavior at the reentrant corner. Both methods are, of
course, limited to domains consisting of a union of rectangles,
relying as they do on expansions into normal modes. The results
of Lin [21] for a symmetric cross-shaped guide were obtained by
applying Montgomery’s method over a domain constituting a
quarter of the cross section, as shown in Fig. 4. Montgomery’s
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method was also applied by Dasgupta and Saha [6] to various
ridged guides, and their results for a symmetric quadruple-ridged
guide, whose cross section is depicted in Fig. 5, are included in
Table 1.

Finite element methods have also been applied to ridged
waveguides by Israel and Miniowitz [10] and Webb [14]. The
former authors considered the symmetric double-ridged guide of
Fig. 3 using quintic Hermite elements, thus achieving C* conti-
nuity over the whole domain. The effect of the singularity is
taken into account by refining the mesh in a graded fashion in
the vicinity of the corner. The current result for the fundamen-
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TABLE 1I

VALUES OF k3 (IN Rapians /UNIT LENGTH) FOR THE FiRsT Two MoDES
IN GUIDES WITH A CORNER OF ANGLE 277

Unit square with

slit (TM)
Kuttler!
Campbell?
Current 0.1 X 0.1 with superelement
Current 0.1 X0.1 without superelement
Current 0.05 X 0.05 with superelement
Current 0.05 X 0.05 without superelement

Vaned rectangular
guide (TM)
Swaminathan et al.’
Current with superelement
Current without superelement

Vaned rectangular
guide (TE)
Swaminathan et al.®
Current with superelement
Current without superelement

No. of kt kr
d.o.f. (1st mode) (2nd mode)
5.815
5.799
111 5.820 7.097
126 5.956 7.124
436 5.801 7.049
451 5.855 7.049
3.677 4.928
210 3.704 4.993
225 3.717 5.034
1.569 2.116
213 1.572 2.105
225 1.573 2.155

lSee [8].
2See [9].
3See [221.

tal mode is very close to their value, as shown in Table I. Webb
computes the magnetic field, imposing the zero-divergence con-
dition via a penalty term. He treated the quadruple-ridged guide
of Fig. 5 using a basis of quadratic elements augmented by
functions possessing a singularity at one or other of the corners.
As shown in Table I, the current results are in excellent agree-
ment with those of Webb.

We now come to the results for a reentrant corner of angle
2. Kuttler [8] and Campbell [9] have determined the lowest
TM mode for a guide of unit square cross section (—1< x <
1,—1< y < 1) with a slit along the line y =0, —1 < x <0. These
authors use finite difference methods, and as with the calcula-
tions of [3] and [4] for the L-shaped case, a large number
(of order 10% or 10%) of degrees of freedom are needed.
Swaminathan et al. [22] treat the case of a vaned rectangular
guide, whose cross section is shown in Fig. 6. They set up an
integral equation for the surface currents and apply the method
of moments with piecewise-constant or piecewise-linear currents
and point matching. The elements of the resulting matrix de-
pend non-linearly on the wavenumber, and the requirement that

the determinant vanish is satisfied by an iterative procedure.
The results of the various calculations are listed and compared
with those obtained by the current method in Table II.

IV. Discussion

The advantages and disadvantages of the various methods
discussed are compared in Table III. A scheme is considered to
be easy to use if it can be incorporated easily into a standard
finite element or finite difference program. The methods of Fix
et al. [13] and Fox et al. [19] are not included in the table, as
they are suitable only for very special types of domain. The
resdlts of the current method agree very well, particularly for
the TE modes, with those of Webb [14], Isracl and Miniowitz
[10], and Swaminathan ez al. [22]. All four schemes are suitable
for polygonal domains of arbitrary shape. The current scheme,
like that of Israel and Miniowitz, has the advantage of being
easy to use. Furthermore, it does not require local mesh refine-
ment near the corners. On the other hand, in contrast to the
other three schemes, it is restricted to reentrant angles of 37 /2
and 2.
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TABLE III
COMPARISON OF THE VARIOUS METHODS
Corners of
Easy General Arbitrary
Method Efficient to Use Domain Angle Disadvantages
Finite differences! v V Large number of degrees
of freedom
Modal expansions? v Only for domains which
' are unions of rectangles
Surface integral equation v Vv v Leads to nonlinear equations
with moment method?
Finite elements with penalty vV N v Nonlocal basis (singular functions
and singular functions® over whole domain)
Singular functions near corners, v v v vV Nonconforming trial functions
finite elements elsewhere’
Hermite cubic finite v v v v Requires local mesh
elements® refinement round corners
Current v v N For angles of 37 /2,27 only

'See [3], [4), [8], and [9].
%See [5]-17], and [21].
3See [22].

4See [14].

SSee [15].

SSee [10].

V. CONCLUSIONS

Superelements have been developed to facilitate the determi-
nation of eigenvalues of the Laplacian over regions containing
one or more reentrant corners of angle 37 /2 or 2#. They have
been used to determine cutoff frequencies for TE and TM
modes in guides with a variety of cross sections, the results
agreeing well with those obtained by other methods. The su-
perelements are compatible with the usual linear or bilinear
finite elements. They may easily be incorporated into standard
finite element programs, thus enabling the latter to deal with
waveguides of polygonal cross section including one or more
reentrant corners of this type.
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