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If magnetic sidewalls are assumed for the structure, then the

functions @~ and @~ can be expressed in the form

Oe(y)=cospny @~,(y) =sinfl. y.

But in the case of electric sidewalls 0, and @l, will be
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Eigenvalues for Ridged and Other Waveguides

Containing Corners of Angle 3T /2 or 2T

by the Finite Element Method

B. Schiff

Abstract —Superelements have heen developed to enable the finite

element method to be nsed for computing eigenvalues of the Laplaciau
over domains containing reentrant corners of angle 3 ~ /2 or 2 m. The
superelements embody mesh refinement and include basis functions

which emulate the singular behavior of the solution at the corner. Being
compatible with linear or bilinear elements, the superelements are easily

incorporated into standard finite element programs. The method has

been used to compute TE and TM mode eigenvalues for ridged and
other wavegnides, and the results agree well with those obtained rising
various other methods.

I. INTRODUCTION

Ridged and other waveguides whose cross sections contain

one or more reentrant corners of angle 3T /2 or 2T are fre-

quently used in microwave devices and circuits. It is therefore
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important to be able to obtain accurate eigenvalues for various

modes of propagation in waveguides of this type, Eigenvalues

have been computed by different authors using a variety of

methods [1]–[9], and the flexibility of the finite element method

would seem to make it ideally suited for this purpose. However,

the standard finite element schemes yield comparatively poor

results when applied to problems whose domain contains a

reentrant corner, owing to the singular nature of the solution

there. One method used to circumvent this difficulty is to refine

the mesh locally in the region of the singularity [10], [11].

Another approach utilizes the known analytic form of the solu-

tion in the neighborhood of the singularity. The shape functions

may be modified suitably over each of the elements which have

a node at the corner, as in [12]; the trial function basis may be

augmented by the addition of functions possessing a suitable

singular behavior at the corner, as in [13] and [14]; or a singular

trial function may be used over a section of a disk centered at

the corner, as in [15]. The calculations to be described herein

use a combination of these ideas. Instead of the usual finite

elements, the region surrounding the corner is covered by a

“superelement” containing a refined mesh over which the trial

function is constrained to approximate the known behavior of

the solution in the neighborhood of the singularity. The super-

element conforms with linear and bilinear elements, and can

easily be incorporated into standard finite element programs.

The method is thus of very general applicability, and herein lies

its chief advantage. The idea was first applied to problems in

two-dimensional elasticity [161, [171, where a reentrant corner of

angle 2T arises as a result Of a crack in the material. Recently

the method has been adapted to determine eigenvalues of the

Laplacian over regions containing a reentrant corner of angle

37/2 [18]. Two superelements for such a corner were tested by

utilizing them to determine eigenvalues for an L-shaped region,

a problem for which highly accurate results have been obtained

by a variety of methods [2]–[4], [13], [19]. In the present paper,

we use these and similar superelements to determine eigenval-

ues for the two lowest TE or TM modes in guides of various

shapes containing one or more corners of angle 3T /2 or 2n-.

The method has been described in detail in [18], and only minor

modifications are needed for an angle of 2rr. The description of

the method in Section II is, therefore, limited to the most

essential features. The results obtained are listed and discussed

in Sections III and IV, and the conclusions summarized in

Section V.

II. THE COMPUTATIONAL SCHEME

The TE and TM fields for the waveguide may be derived from

potentials which satisfy the Helmholtz equation

Vzw(x, y,z)+k;w(x, y,z)=o (1)

where kO is the propagation constant in free space. Taking the

guide axis to be in the z direction, we assume that T(x, y, z) =

*(x, y)ei@= and hence obtain the equation

v;~(x, y)+k;lj(x, y)=o (2)

where k$ = k; – P2 and V; denotes the two-dimensional

Laplacian. Thus we wish to solve

(V#+A)~(x, y)=O in D (3)

with boundary conditions

$=0 on dD (TM modes)

Fig. 1

or

L-shaped superelement embedded in external mesh DOut.

(3*
~=o on dD (TE modes) (4)

where the eigenvalue is A = k;.

To solve the problem by the finite element method, we use a

superelement over the irqmediate neighborhood of each re-

entrant corner and cover the remainder of D with the usual

elements. In the cases under discussion, the reentrant corners

are all of magnitude 3T /2 or 2T, and we therefore employ

L-shaped or rectangular <uperelements. The superelement con-

tains two regions, an interior region Din, over which the original

mesh is refined, and a transition region Dtr, which enables the

trial function over Din to be matched to that in Dout, the region

outside the superelement, as shown in Fig. 1 for an angle of

3z-/2.

The trial function over D,n is designed to emulate the behav-

ior of the exact solution in the neighborhood of the singularity.

The analytic form of the series expansion for this solution is

known, and the nodal values belonging to D,n are tlierefore

constrained to agree with this series, suitably truncated. Over

each small rectangle of D,n, the trial function is then taken as

the bilinear interpolant }0 the nodal values at its four corners.

The stiffness and mass matrices for D,n will thus be expressed

with respect to the coefficients in the truncated series. The trial

function in Dtr is taken to be piecewise bilinear, in such a way

as to match up between the nodal values of D,n and of DOut on

its boundary. Thus the whole superelement conforms to bilinear

functions over rectangles or linear functions over triangles in

D out. The superelement stiffness and mass matrices will thus be

with respect to the coefficients of the truncated series and Ithe

nodal values belonging to the faces abutting DOUt as variables.

A detailed description of the construction of the super-

element for an angle of 37r /2 is given in [18]. In the case of a

reentrant corner of angle 2rr, taking polar coordinates (r, 0)

with the origin at the corner, the domain will be the region
— n- <6< m with a slit along 8 = + z-. The form of the solution
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TABLE I
VALUES OF k~ (IN RADIANS/UNIT LENGTH) FOR THE FIRST Two MODES IN VARIOUS GUIDES

WITH CORNERS OF ANGLE 3n- /2

Double L-shaped guide (TM)

Fox et all and Fm et al.2
Current: 0.2 x0.2 with superelement

Current: 0.2 x0.2 without superelement
Current: 0.1 X0.1 with superelement
Current: 0.1 X 0.1 without superelement

Cr;osd guide (TE)

Current: with refinement and superelement

Current: with refinement alone

Current: without refinement

Symmetric double-ridged guide (TE)
‘ Montgomery

Utsumi5
Israel etal.6

Current: with refinement and superelement

Current: with refinement alone

Current: without refinement

Symmetric quadruple-ridged guide (TE)
Dasgupta and Saha7
Webbs

Current: with refinement and superelement

Current: with refinement alone

Current: without refinement

No. of
d.o.f. (lst ~ode)

k~

(2nd mode)

84
96

329
341

165

174
112

164
150
159

98

304

336
125

3.105
3.128
3.160
3.114
3.121

7.40
7.402

7.415
7.428

3.650
3.652
3.657
3.658
3.667
3.685

1.822
1.808
1.811

1.815

1.858

3.898
3.948
3.962
3.914
3.914

21.89
21.96

21.99

22.03

8.041
8.014

8.056
8.062
8.073

2.322
2.300
2.308

2.313

2.372

ISee [19].

2See [13].

3See [21].
4See [5].
5See [7].
%ee [10].
7See [6].
8See [14].

in the neighborhood of the corner will be

. .

[ ( )1

1
u(r, O) = ~ ~ c,, r2L+Jsin jO+dL1r2L+J-112cos j– ~ O

2=OJ=1

(5)

for boundary conditions u = O over O = ~ n-, and

.

[ ( )1
u(r, O) = ~ ~ yL, r2’+1cos jO+8L1r2L+J+112 sin j+: Q~=lJj=lJ

(6)

for boundary conditions du /dn = O over 19= ~ r. The super-

element is analogous to that for an angle of 3m-/2 except that it

is now rectangular in shape, with a slit along O = & v. As with

the former case, we include all terms with a power of r less than

or equal to 4, involving a total of 12 and 15 terms respectively.

The global stiffness and mass matrices Kh and hlh for the

whole region, including the contributions from the superelement

matrices for each reentrant corner, are assembled in the usual

manner. The global variables consist of the nodal values for

each node of DOUt, together with the series coefficients for each

of the superelements. The generalized eigenvalue problem

(7)

is finally solved to give the eigenvalues A$, which give approxi-

mations to (kT)f and the corresponding eigenvectors Q,.

III. NUMERICAL RESULTS AND DISCUSSION

In order to assess the effectiveness of the method, it was

applied to various cases for which calculations have been made

by other authors. We first discuss the case where the reentrant

corners are of angle 3Tr /2. The two superelements (one for

each type of boundary condition in (4)) which had been con-

structed for the benchmark calculations [18] were employed

throughout, and the results are listed in Table I, together with

those of the previous authors. The number of degrees of free-

dom (d.o.f.) listed, i.e., the dimension of the vector @ in (7), is

equal to the number of nodes belonging to DOut together with

the total number of series coefficients. The IMSL routine EIGZS

was employed to determine the eigenvalues of (7) for cases

where the total number of degrees of freedom did not exceed

222. For larger problems, the core memory did not suffice, and

the eigenvalues were determined one at a time using inverse

iteration [20]. The matrices were stored in band form, and the

various matrix operations were carried out using a local library

routine, BIGMATR, which handles the disk transfers automati-

cally, as well as performing the computations. Later computa-

tions were performed using the CDC NOSVE operating system

incorporating virtual memory.

In all cases other than the first listed in Table I, the geometry

of the domain required the mesh to be refined to a certain

extent in the neighborhood of a corner in order to be able to

insert the superelement. To illustrate the effect of this refine-

ment and of the use of the superelement separately, we have

also included in Table I (the entries labeled “with refinement

alone”) the results obtained in replacing the superelement by
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Fig. 2. Double-L-shaped single-ridged guide.

the appropriate number of bilinear elements identical in size to

those used in the adjacent portion of DOU,. It will be seen that

the use of a superelement has a noticeable effect on the lowest

eigenvalue, but affects the next eigenvalue to a lesser extent.

The effect on the higher eigenvalues was found to be even less

noticeable.

We will now describe briefly the cases considered and the

methods used by other authors with whose results those of the

current method are compared in Table I. The double-L-shaped

single-ridged guide is shown in Fig. 2. The problem is solved

over the L-shaped domain constituting half of the cross section,

and detailed results have been listed for this case previously [18].

The eigenvalues obtained for the two lowest TM modes are

included in Table I in order to illustrate the convergence with

decreasing mesh size. In their highly accurate calculations for

this case, both Fox et al. [19] and Fix et al. [13] took advantage

of the symmetry of the domain and solved the problem over only

a third or a half of the L-shaped region. Their calculations

required significantly fewer degrees of freedom than the current

method, but the methods used are not, on the other hand, of

such general applicability. The results of Beaubien and Wexler

[3], [4] were obtained using standard finite difference tech-

niques, and their method is thus generally applicable. However,

it makes no special provision for the presence of the singularity,

and therefore entails the use of a large number of degrees of

freedom (the authors themselves used up to 5000 for the L-

shaped case).

TE mode eigenvalues for the symmetric double-ridged guide

depicted in Fig. 3 have been obtained by Montgomery [5],

Utsumi [7], and Israel and Miniowitz [10]. The problem is solved

over a quarter of the cross section, a region consisting of two

rectangles. Montgomery expands the solution over each rectan-

gle into normal modes, and sets up an integral equation for the

tangential component of the electric field over the interface.

Application of the Ritz–Galerkin technique to the integral

equation yields the eigenvalue. Utsumi, on the other hand, sets

up a variational expression for the eigenvalue, using trial func-

tions based on normal mode expansions in each rectangle. The

integral over the interface again involves the tangential electric

field, for which Utsumi employs trial functions which reflect the

singular behavior at the reentrant corner. Both methods are, of

course, limited to domains consisting of a union of rectangles,

relying as they do on expansions into normal modes. The results

of Lin [21] for a symmetric cross-shaped guide were obtained by

applying Montgomery’s method over a domain constituting a

quarter of the cross section, as shown in Fig. 4. Montgomery’s

0.2 I

+1 :------_-----
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Fig. 3. Symmetric double-ridged guide.
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Fig. 4. Quarter of symmetrical crossed rectangular guide.

method was also applied by Dasgupt? and Saha [6] to various

ridged guides, and their results for a symmetric quadruple-ridged

guide, whose cross section is depicted in Fig. 5, are included in

Table I.

Finite element methods have also been applied to ridged

waveguides by Israel and Miniowitq [10] and Webb [14]. The

former authors considered the symmetric double-ridged guide of

Fig. 3 using quintic Herrnite elements, thus achieving C1 conti-

nuity over the whole domain. The effect of the singularip~ is

taken into account by refining the mesh in a graded fashion in

the vicinity of the corner. The current result for the fundamen-
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TABLE II
VALUES OF k ~ (IN RADIANS/UNIT LENGTH) FOR THE FIRST Two MODES

IN GUIDES WITH A CORNER OF ANGLE 2T

Unit square with
slit (TM)

Kuttlerl
Campbellz
Current 0.1 X 0.1 with superelement
Current 0.1 X0.1 without superelement
Current 0.05 x 0.05 with superelement
Current 0.05 x 0.05 without superelement

Vaned rectangular
guide (TM)

Swaminathan et al.3

Current with superelement
Current without superelement

Vaned rectangular

guide (TE)

Swaminathan et al.3

Current with superelement

Current without superelement

No. of k~
d.o.f. (lst ~ode) (2nd mode)

111
126
436
451

5.815
5.799
5.820 7.097
5.956 7.124
5.801 7.049
5.855 7.049

3.677 4.928
210 3.704 4.993
225 3.717 5.034

213
225

1.569
1.572
1.573

2.116
2.105
2.155

lSee [8].
‘See [9].
3See [22].

tal mode is very close to their value, as shown in Table I. Webb

computes the magnetic field, imposing the zero-divergence con-

dition via a penalty term. He treated the quadruple-ridged guide

of Fig. 5 using a basis of quadratic elements augmented by

functions possessing a singularity at one or other of the corners.

As shown in Table I, the current results are in excellent agree-

me~t with those of Webb.
We now come to the results for a reentrant corner of angle

2m. Kuttler [8] and Campbell [9] have determined the lowest

TM mode for a guide of unit square cross section ( – 1< .x <

1,–1 < y < 1) with a slit along the line y = O, – 1< x <0. These

authors use finite difference methods, and as with the calcula-

tions of [3] and [4] for the L-shaped case, a large number

(of order 103 or 104) of degrees of freedom are needed.

Swaminathan et al. [22] treat the case of a vaned rectangular

guide, whose cross section is shown in Fig. 6. They set up an

integral equation for the surface currents and apply the method

of moments with piecewise-constant or piecewise-linear currents

and point matching. The elements of the resulting matrix de-

pend non-linearly on the wavenumber, and the requirement that

the determinant vanish is satisfied by an iterative procedure.

The results of the various calculations are listed and compared

with those obtained by the current method in Table II.

IV. DISCUSSION

The advantages and disadvantages of the various methods

disctissed are compared in Table III. A scheme is considered to

be easy to use if it can be incorporated easily into a standard

finite element or finite difference program. The methods of Fix

et al. [13] and Fox et al. [19] are not included in the table, as

they are suitable only for very special types of domain. The

results of the current method agree very well, particularly for

the TE modes, with those of Webb [14], Israel and Miniowitz

[10], and Swaminathan et al. [22], All four schemes are suitable

for polygonal domains of arbitrary shape. The current scheme,

like that of Israel and Miniowitz, has the a~vantage of being

easy to use. Furthermore, it does hot require local mesh refine-

ment near the corners. On the other hand, in contrast to the

other three schemes, it is restricted to reentrant angles of 3T /2

and 2m-.
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TABLE III
COMPARISONOFTHE VARIOUS METHODS

Corners of
Easy General Arbitrary

Method Efficient to Use Domain Angle Disadvantages

Finite differences J 4 Large number of degrees
of freedom

Modal expansions v’ Qnly for domains which

Surface integral equation
are unions of rectangles

v’ 4 4 Leads to nonlinear equations
with moment method3

Finite elements with penalty 4 J 4 Nonlocal basis (singular functions
and singular functions4 over whole domain)

Singular functions near corners, J 4 4 4 Nonconforming trial functions
finite elements elsewhere

Hermite cubic finite 4 J 4 4 Requires local mesh
elementsc

Current
refinement round corners

4 J 4 For angles of 3T /2, 27 only

‘See [3], [4], [8], and [9].
‘See [5]-[7], and [21].
3See [22].
4See [14].
‘See [15].
%ee [10].

V. COnClUSiOnS

Superelements have been developed to facilitate the determi-

nation of eigenvalues of the Laplacian over regions containing

one or more reentrant corners of angle 3m-/2 or 2n-. They have

been used to determine cutoff frequencies for TE and TM

modes in guides with a variety of cross sections, the results

agreeing well with those obtained by other methods. The su-

perelements are compatible with the usual linear or bilinear

finite elements. They may easily be incorporated into standard

finite element programs, thus enabling the latter to deal with

waveguides of polygonal cross section including one or more

reentrant corners of this type.
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